Awesome-OL Models

A comprehensive collection of online learning strategies and classifiers for your machine learning projects

Note: This page provides an overview of all available models in Awesome-OL. For detailed usage instructions, please refer to the User Guide section.

Key Insights and Overview

Model Diversity

Awesome-OL provides a comprehensive collection of models covering various aspects of online learning:

Feature Highlights

The toolkit excels in several key areas:

Performance Considerations

When selecting a method, consider:

🧠 OAL Strategies

Explore a variety of online active learning strategies in the OAL_strategies/ folder.

Strategy Description Reference Code ear Journal/Conference
CogDQS Dual-query strategy using human memory cognition IEEE 2023 TNNLS
DSA-AI Dynamic submodular learning for imbalanced drifting streams IEEE GitHub 2024 TNNLS
MTSGQS Memory-triggered submodularity-guided strategy IEEE 2023 TITS
DMI-DD Explanation-based query strategy at chunk level IEEE GitHub 2024 TCYB

Baseline Strategies

Strategy Description Reference Code Year Journal/Conference
RS Random Sampling
US_fix Uncertainty sampling with fixed threshold IEEE 2014 TNNLS
US_var Uncertainty sampling with variable threshold IEEE 2014 TNNLS

⚙️ OAL Classifiers

Classifier Description Reference Source Year Journal/Conference
ROALE-DI Reinforcement-based ensemble for drifting imbalanced data IEEE GitHub 2022 TKDE
OALE Online ensemble with hybrid labeling IEEE 2019 TNNLS

🔍 OSSL Classifiers

Classifier Description Reference Source Year Journal/Conference
OSSBLS Semi-supervised BLS with static anchors IEEE 2021 TII
ISSBLS Semi-supervised BLS without historical dependency IEEE 2021 TII

Baseline Strategy

Classifier Description Reference Year Journal/Conference
SOSELM Semi-supervised ELM ScienceDirect Paper 2016 Neurocomputing

📊 Supervised Classifiers

Classifier Description Reference Source Year Journal/Conference
OLI2DS Imbalanced data stream learner with dynamic costs IEEE GitHub 2023 TKDE
IWDA Learner-agnostic drift adaptation using density estimation IEEE GitHub 2023 TNNLS
DES Drift-adaptive ensemble with SMOTE IEEE GitHub 2024 TNNLS
ACDWM Adaptive chunk selection for stability and drift IEEE GitHub 2020 TNNLS
ARF Adaptive resampling ensemble with ADWIN Springer GitHub 2017 Machine Learning
SRP Random subspace + online bagging IEEE GitHub 2019 ICDM
BLS-W Online BLS with Sherman–Morrison–Woodbury update IEEE GitHub 2023 TCYB
QRBLS BLS with QR factorization IEEE GitHub 2025 TNNLS

Baseline Classifier

Classifier Description Reference Source Year Journal/Conference
OSELM Sequential ELM without drift detection IEEE GitHub 2006 TNNLS

🧩 Summary of Features

Method OAL Strategy Classifier Binary Multi-class Drift Adaptation Ensemble
ROALE-DI
CogDQS
DSA-AI
DMI-DD
MTSGQS
RS
US-fix
US-var
OLI2DS
IWDA
DES
ACDWM
SRP
ARF
QRBLS